On Lie groups and hyperbolic symmetry—From Kunze–Stein phenomena to Riesz potentials

Sharp forms of Kunze–Stein phenomena on SL(2,R) are obtained by using symmetrization and Stein–Weiss potentials. A new structural proof with remarkable simplicity can be given on SL(2,R) which effectively transfers the analysis from the group to the symmetric space corresponding to a manifold with n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2015-10, Vol.126, p.394-414
1. Verfasser: Beckner, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sharp forms of Kunze–Stein phenomena on SL(2,R) are obtained by using symmetrization and Stein–Weiss potentials. A new structural proof with remarkable simplicity can be given on SL(2,R) which effectively transfers the analysis from the group to the symmetric space corresponding to a manifold with negative curvature. Our methods extend to include the Lorentz groups and n-dimensional hyperbolic space through application of the Riesz–Sobolev rearrangement inequality. A new framework is developed for Riesz potentials on semisimple symmetric spaces and the semi-direct product of groups analogous to the Iwasawa decomposition for semisimple Lie groups. Extensions to higher-rank Lie groups and analysis on multidimensional connected hyperboloids including anti de Sitter space are suggested by the analysis outlined here.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2015.06.009