Influence of Cutting Parameters on Energy Consumption and Material Removal Rate in Turning Process

This paper presents a novel approach for the optimization of machining parameters on turning of Mild Steel alloy with multiple responses based on orthogonal array with grey relational analysis. Experiments are conducted on mild steel alloy. Turning tests are carried out using coated carbide insert u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mechanics and materials 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.282-290
Hauptverfasser: Choi, Seong Joo, Otim, Fredrick Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach for the optimization of machining parameters on turning of Mild Steel alloy with multiple responses based on orthogonal array with grey relational analysis. Experiments are conducted on mild steel alloy. Turning tests are carried out using coated carbide insert under dry cutting condition. In this work, turning parameters such as cutting speed, feed rate and depth of cut are optimized considering the multiple responses such as Energy Consumption (EC), and Material Removal Rate (MRR). A grey relational grade (GRG) of 0.746 is determined from the grey analysis for experimental run 27 meaning the control factors of this combination exhibit a stronger relationship with the response variables. Therefore, a spindle speed of 440 rpm, a feed rate of 0.24 mm/rev, and a depth of cut of 0.75 mm is the optimal parameter combination for the turning operation. The order of importance determined for the controllable factors to the Energy Consumption, in sequence, is the feed rate, spindle speed and depth of cut; while order to the Material Removal Rate, in sequence is depth of cut, feed rate and spindle speed. Optimum levels of parameters have been identified based on the values of grey relational grade and then finally, it was observed through ANOVA that the feed rate is the most influential and significant control factor among the three cutting parameters when turning mild steel in the conventional lathe tool, in order to minimize Energy Consumption and maximize Material Removal Rate.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.799-800.282