Inequalities for zeros of Jacobi polynomials via Sturm’s theorem: Gautschi’s conjectures
Let x n , k ( α , β ) , k = 1 , … , n , be the zeros of Jacobi polynomials P n ( α , β ) ( x ) arranged in decreasing order on ( − 1 , 1 ) , where α , β > − 1 , and θ n , k ( α , β ) = arccos x n , k ( α , β ) . Gautschi, in a series of recent papers, conjectured that the inequalities n θ n , k (...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2014-11, Vol.67 (3), p.549-563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
x
n
,
k
(
α
,
β
)
,
k
=
1
,
…
,
n
, be the zeros of Jacobi polynomials
P
n
(
α
,
β
)
(
x
)
arranged in decreasing order on
(
−
1
,
1
)
, where
α
,
β
>
−
1
, and
θ
n
,
k
(
α
,
β
)
=
arccos
x
n
,
k
(
α
,
β
)
. Gautschi, in a series of recent papers, conjectured that the inequalities
n
θ
n
,
k
(
α
,
β
)
<
(
n
+
1
)
θ
n
+
1
,
k
(
α
,
β
)
and
(
n
+
(
α
+
β
+
3
)
/
2
)
θ
n
+
1
,
k
(
α
,
β
)
<
(
n
+
(
α
+
β
+
1
)
/
2
)
θ
n
,
k
(
α
,
β
)
,
hold for all
n
≥
1
,
k
=
1
,
…
,
n
, and certain values of the parameters
α
and
β
. We establish these conjectures for large domains of the
(
α
,
β
)
-plane by using a Sturmian approach. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-013-9807-7 |