Factorized parallel preconditioner for the saddle point problem

The aim of this paper is to apply the factorized sparse approximate inverse (FSAI) preconditioner to the iterative solution of linear systems with indefinite symmetric matrices. Until now the FSAI technique has been applied mainly to positive definite systems and with a limited success for the indef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2011-09, Vol.27 (9), p.1398-1410
Hauptverfasser: Lazarov, B. S., Sigmund, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to apply the factorized sparse approximate inverse (FSAI) preconditioner to the iterative solution of linear systems with indefinite symmetric matrices. Until now the FSAI technique has been applied mainly to positive definite systems and with a limited success for the indefinite case. Here, it is demonstrated that the sparsity pattern for the preconditioner can be chosen in such a way that it guarantees the existence of the factorization. The proposed scheme shows excellent parallel scalability, performance and robustness. It is applicable with short recurrence iterative methods such as MinRes and SymmLQ. The properties are demonstrated on linear systems arising from mixed finite element discretizations in linear elasticity. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:2040-7939
2040-7947
2040-7947
DOI:10.1002/cnm.1366