Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route

All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics international 2015-07, Vol.41 (6), p.7836-7846
Hauptverfasser: Guglielmi, Paula O., Blaese, Diego, Hablitzel, Murilo P., Nunes, Gabriel F., Lauth, Victor R., Hotza, Dachamir, Al-Qureshi, Hazim A., Janssen, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7846
container_issue 6
container_start_page 7836
container_title Ceramics international
container_volume 41
creator Guglielmi, Paula O.
Blaese, Diego
Hablitzel, Murilo P.
Nunes, Gabriel F.
Lauth, Victor R.
Hotza, Dachamir
Al-Qureshi, Hazim A.
Janssen, Rolf
description All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used here to reinforce a porous oxide matrix composed of 80vol% Al2O3 and 20vol% ZrO2. The mechanical behavior of composites submitted to different heat treatments is investigated under 4-point bending and short beam shear. Results show that composites with low interlaminar shear strength present a graceful failure under 4-point bending, characterized by a stepwise stress reduction upon straining beyond the peak stress. The fracture of such composites is accompanied by a series of interfacial delamination events, which enhance energy dissipation during failure. An increase of the interlaminar shear strength due to matrix densification causes a loss of the stepped stress–strain behavior. Nevertheless, fiber-related toughening mechanisms such as crack deflection and bridging still ensure inelastic deformation up to failure of these composites.
doi_str_mv 10.1016/j.ceramint.2015.02.120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884215003399</els_id><sourcerecordid>1770355849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-67f22f9be6643be6c32152327c972641b4f5b722cc3a2b87a728d989f7f2f83b3</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EpS6lr1D5yCXBHidxcgNVUCq14gJny_GOJa-ceBk7VffEq-PVwpmLR_L832jmY-xOilYKOXw8tA7JLmEtLQjZtwJaCeIN28lRq0ZN_fCW7QRoaMaxg2v2LueDqODUiR37_RwcpVxoc2Uj5Hbdcx_xdSMb-ZHSEakEzDx5vmyxhGhPSFgzYUZqCMPqE7n6kV7DHrlLyzHlUCrh7UzB2VJ784lbvqYXjDyeF7UlpJVT2gq-Z1fexoy3f-sN-_n1y4_7b83T94fH-89PjetkX5pBewA_zTgMnaqvUyB7UKDdpGHo5Nz5ftYAzikL86ithnE_jZOvnB_VrG7Yh8vcetOvDXMxS8gOY7Qrpi0bqbVQfT92U40Ol-hZTCb05khhsXQyUpizcXMw_4ybs3EjwFTjFfx0AbEe8hKQTHYB12onELpi9in8b8QfYfmQ0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770355849</pqid></control><display><type>article</type><title>Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route</title><source>Access via ScienceDirect (Elsevier)</source><creator>Guglielmi, Paula O. ; Blaese, Diego ; Hablitzel, Murilo P. ; Nunes, Gabriel F. ; Lauth, Victor R. ; Hotza, Dachamir ; Al-Qureshi, Hazim A. ; Janssen, Rolf</creator><creatorcontrib>Guglielmi, Paula O. ; Blaese, Diego ; Hablitzel, Murilo P. ; Nunes, Gabriel F. ; Lauth, Victor R. ; Hotza, Dachamir ; Al-Qureshi, Hazim A. ; Janssen, Rolf</creatorcontrib><description>All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used here to reinforce a porous oxide matrix composed of 80vol% Al2O3 and 20vol% ZrO2. The mechanical behavior of composites submitted to different heat treatments is investigated under 4-point bending and short beam shear. Results show that composites with low interlaminar shear strength present a graceful failure under 4-point bending, characterized by a stepwise stress reduction upon straining beyond the peak stress. The fracture of such composites is accompanied by a series of interfacial delamination events, which enhance energy dissipation during failure. An increase of the interlaminar shear strength due to matrix densification causes a loss of the stepped stress–strain behavior. Nevertheless, fiber-related toughening mechanisms such as crack deflection and bridging still ensure inelastic deformation up to failure of these composites.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2015.02.120</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alumina ; Aluminum oxide ; Ceramic matrix composites ; Failure ; Fracture mechanics ; Interfacial shear strength ; Lamination ; Microstructure ; Oxides ; Stress-strain relationships ; Stresses ; Thermoplastic prepregs ; Zirconia</subject><ispartof>Ceramics international, 2015-07, Vol.41 (6), p.7836-7846</ispartof><rights>2015 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-67f22f9be6643be6c32152327c972641b4f5b722cc3a2b87a728d989f7f2f83b3</citedby><cites>FETCH-LOGICAL-c415t-67f22f9be6643be6c32152327c972641b4f5b722cc3a2b87a728d989f7f2f83b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ceramint.2015.02.120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guglielmi, Paula O.</creatorcontrib><creatorcontrib>Blaese, Diego</creatorcontrib><creatorcontrib>Hablitzel, Murilo P.</creatorcontrib><creatorcontrib>Nunes, Gabriel F.</creatorcontrib><creatorcontrib>Lauth, Victor R.</creatorcontrib><creatorcontrib>Hotza, Dachamir</creatorcontrib><creatorcontrib>Al-Qureshi, Hazim A.</creatorcontrib><creatorcontrib>Janssen, Rolf</creatorcontrib><title>Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route</title><title>Ceramics international</title><description>All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used here to reinforce a porous oxide matrix composed of 80vol% Al2O3 and 20vol% ZrO2. The mechanical behavior of composites submitted to different heat treatments is investigated under 4-point bending and short beam shear. Results show that composites with low interlaminar shear strength present a graceful failure under 4-point bending, characterized by a stepwise stress reduction upon straining beyond the peak stress. The fracture of such composites is accompanied by a series of interfacial delamination events, which enhance energy dissipation during failure. An increase of the interlaminar shear strength due to matrix densification causes a loss of the stepped stress–strain behavior. Nevertheless, fiber-related toughening mechanisms such as crack deflection and bridging still ensure inelastic deformation up to failure of these composites.</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Ceramic matrix composites</subject><subject>Failure</subject><subject>Fracture mechanics</subject><subject>Interfacial shear strength</subject><subject>Lamination</subject><subject>Microstructure</subject><subject>Oxides</subject><subject>Stress-strain relationships</subject><subject>Stresses</subject><subject>Thermoplastic prepregs</subject><subject>Zirconia</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EpS6lr1D5yCXBHidxcgNVUCq14gJny_GOJa-ceBk7VffEq-PVwpmLR_L832jmY-xOilYKOXw8tA7JLmEtLQjZtwJaCeIN28lRq0ZN_fCW7QRoaMaxg2v2LueDqODUiR37_RwcpVxoc2Uj5Hbdcx_xdSMb-ZHSEakEzDx5vmyxhGhPSFgzYUZqCMPqE7n6kV7DHrlLyzHlUCrh7UzB2VJ784lbvqYXjDyeF7UlpJVT2gq-Z1fexoy3f-sN-_n1y4_7b83T94fH-89PjetkX5pBewA_zTgMnaqvUyB7UKDdpGHo5Nz5ftYAzikL86ithnE_jZOvnB_VrG7Yh8vcetOvDXMxS8gOY7Qrpi0bqbVQfT92U40Ol-hZTCb05khhsXQyUpizcXMw_4ybs3EjwFTjFfx0AbEe8hKQTHYB12onELpi9in8b8QfYfmQ0w</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Guglielmi, Paula O.</creator><creator>Blaese, Diego</creator><creator>Hablitzel, Murilo P.</creator><creator>Nunes, Gabriel F.</creator><creator>Lauth, Victor R.</creator><creator>Hotza, Dachamir</creator><creator>Al-Qureshi, Hazim A.</creator><creator>Janssen, Rolf</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150701</creationdate><title>Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route</title><author>Guglielmi, Paula O. ; Blaese, Diego ; Hablitzel, Murilo P. ; Nunes, Gabriel F. ; Lauth, Victor R. ; Hotza, Dachamir ; Al-Qureshi, Hazim A. ; Janssen, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-67f22f9be6643be6c32152327c972641b4f5b722cc3a2b87a728d989f7f2f83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Ceramic matrix composites</topic><topic>Failure</topic><topic>Fracture mechanics</topic><topic>Interfacial shear strength</topic><topic>Lamination</topic><topic>Microstructure</topic><topic>Oxides</topic><topic>Stress-strain relationships</topic><topic>Stresses</topic><topic>Thermoplastic prepregs</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guglielmi, Paula O.</creatorcontrib><creatorcontrib>Blaese, Diego</creatorcontrib><creatorcontrib>Hablitzel, Murilo P.</creatorcontrib><creatorcontrib>Nunes, Gabriel F.</creatorcontrib><creatorcontrib>Lauth, Victor R.</creatorcontrib><creatorcontrib>Hotza, Dachamir</creatorcontrib><creatorcontrib>Al-Qureshi, Hazim A.</creatorcontrib><creatorcontrib>Janssen, Rolf</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guglielmi, Paula O.</au><au>Blaese, Diego</au><au>Hablitzel, Murilo P.</au><au>Nunes, Gabriel F.</au><au>Lauth, Victor R.</au><au>Hotza, Dachamir</au><au>Al-Qureshi, Hazim A.</au><au>Janssen, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route</atitle><jtitle>Ceramics international</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>41</volume><issue>6</issue><spage>7836</spage><epage>7846</epage><pages>7836-7846</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used here to reinforce a porous oxide matrix composed of 80vol% Al2O3 and 20vol% ZrO2. The mechanical behavior of composites submitted to different heat treatments is investigated under 4-point bending and short beam shear. Results show that composites with low interlaminar shear strength present a graceful failure under 4-point bending, characterized by a stepwise stress reduction upon straining beyond the peak stress. The fracture of such composites is accompanied by a series of interfacial delamination events, which enhance energy dissipation during failure. An increase of the interlaminar shear strength due to matrix densification causes a loss of the stepped stress–strain behavior. Nevertheless, fiber-related toughening mechanisms such as crack deflection and bridging still ensure inelastic deformation up to failure of these composites.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2015.02.120</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2015-07, Vol.41 (6), p.7836-7846
issn 0272-8842
1873-3956
language eng
recordid cdi_proquest_miscellaneous_1770355849
source Access via ScienceDirect (Elsevier)
subjects Alumina
Aluminum oxide
Ceramic matrix composites
Failure
Fracture mechanics
Interfacial shear strength
Lamination
Microstructure
Oxides
Stress-strain relationships
Stresses
Thermoplastic prepregs
Zirconia
title Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20flexural%20properties%20of%20multilayered%20fiber-reinforced%20oxide%20composites%20fabricated%20by%20a%20novel%20lamination%20route&rft.jtitle=Ceramics%20international&rft.au=Guglielmi,%20Paula%20O.&rft.date=2015-07-01&rft.volume=41&rft.issue=6&rft.spage=7836&rft.epage=7846&rft.pages=7836-7846&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2015.02.120&rft_dat=%3Cproquest_cross%3E1770355849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770355849&rft_id=info:pmid/&rft_els_id=S0272884215003399&rfr_iscdi=true