Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route
All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2015-07, Vol.41 (6), p.7836-7846 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All-oxide ceramic matrix composites produced by a novel route based on the lamination of thermoplastic prepregs are investigated. This route allows for the production of composites with very homogeneous microstructures and a reduced amount of matrix cracks. NextelTM 610 alumina woven fabric is used here to reinforce a porous oxide matrix composed of 80vol% Al2O3 and 20vol% ZrO2. The mechanical behavior of composites submitted to different heat treatments is investigated under 4-point bending and short beam shear. Results show that composites with low interlaminar shear strength present a graceful failure under 4-point bending, characterized by a stepwise stress reduction upon straining beyond the peak stress. The fracture of such composites is accompanied by a series of interfacial delamination events, which enhance energy dissipation during failure. An increase of the interlaminar shear strength due to matrix densification causes a loss of the stepped stress–strain behavior. Nevertheless, fiber-related toughening mechanisms such as crack deflection and bridging still ensure inelastic deformation up to failure of these composites. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2015.02.120 |