Turing-type instabilities in bulk–surface reaction–diffusion systems

In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-12, Vol.289, p.142-152
1. Verfasser: Raetz, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 142
container_title Journal of computational and applied mathematics
container_volume 289
creator Raetz, Andreas
description In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell.
doi_str_mv 10.1016/j.cam.2015.02.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715001272</els_id><sourcerecordid>1770355228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-94c23c3286ec6a1e6f0ce5d1fbdbbb9bc4f192cce9e1c58c4e527a03c728cb723</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHZZskmwnR8nYoUqoEiV2JS15UzGyCVNisdB6o47cENOgquyZjUzT--N9D7GrgXPBBfV7SYDs80kF2XGZcZLfsJmolZNKpSqT9mM50qlvJDqnF0QbTjnVSOKGVuuJ--GtzTsd5i4gYJpXe-CQ4pX0k79-8_XN03eGsDEo4HgxiFKnbN2orgntKeAW7pkZ9b0hFd_c85eHx_Wi2W6enl6XtyvUiiKPKRNATKHXNYVQmUEVpYDlp2wbde2bdNCYUUjAbBBAWUNBZZSGZ6DkjW0SuZzdnP8u_Pjx4QU9NYRYN-bAceJdOzL87KUso5WcbSCH4k8Wr3zbmv8XguuD9T0Rkdq-kBNc6kjtZi5O2Ywdvh06DWBwwGwcx4h6G50_6R_AZgJeNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770355228</pqid></control><display><type>article</type><title>Turing-type instabilities in bulk–surface reaction–diffusion systems</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Raetz, Andreas</creator><creatorcontrib>Raetz, Andreas</creatorcontrib><description>In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.02.050</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computation ; Diffusion ; Diffusion coefficient ; Diffusion rate ; Instability ; Joining ; Mathematical models ; Numerical simulations of reaction–diffusion systems ; PDE’s on surfaces ; Reaction–diffusion systems ; Stability ; Turing instability</subject><ispartof>Journal of computational and applied mathematics, 2015-12, Vol.289, p.142-152</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-94c23c3286ec6a1e6f0ce5d1fbdbbb9bc4f192cce9e1c58c4e527a03c728cb723</citedby><cites>FETCH-LOGICAL-c443t-94c23c3286ec6a1e6f0ce5d1fbdbbb9bc4f192cce9e1c58c4e527a03c728cb723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042715001272$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Raetz, Andreas</creatorcontrib><title>Turing-type instabilities in bulk–surface reaction–diffusion systems</title><title>Journal of computational and applied mathematics</title><description>In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell.</description><subject>Computation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Instability</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Numerical simulations of reaction–diffusion systems</subject><subject>PDE’s on surfaces</subject><subject>Reaction–diffusion systems</subject><subject>Stability</subject><subject>Turing instability</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHZZskmwnR8nYoUqoEiV2JS15UzGyCVNisdB6o47cENOgquyZjUzT--N9D7GrgXPBBfV7SYDs80kF2XGZcZLfsJmolZNKpSqT9mM50qlvJDqnF0QbTjnVSOKGVuuJ--GtzTsd5i4gYJpXe-CQ4pX0k79-8_XN03eGsDEo4HgxiFKnbN2orgntKeAW7pkZ9b0hFd_c85eHx_Wi2W6enl6XtyvUiiKPKRNATKHXNYVQmUEVpYDlp2wbde2bdNCYUUjAbBBAWUNBZZSGZ6DkjW0SuZzdnP8u_Pjx4QU9NYRYN-bAceJdOzL87KUso5WcbSCH4k8Wr3zbmv8XguuD9T0Rkdq-kBNc6kjtZi5O2Ywdvh06DWBwwGwcx4h6G50_6R_AZgJeNk</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Raetz, Andreas</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Turing-type instabilities in bulk–surface reaction–diffusion systems</title><author>Raetz, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-94c23c3286ec6a1e6f0ce5d1fbdbbb9bc4f192cce9e1c58c4e527a03c728cb723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Instability</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Numerical simulations of reaction–diffusion systems</topic><topic>PDE’s on surfaces</topic><topic>Reaction–diffusion systems</topic><topic>Stability</topic><topic>Turing instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raetz, Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raetz, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turing-type instabilities in bulk–surface reaction–diffusion systems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>289</volume><spage>142</spage><epage>152</epage><pages>142-152</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.02.050</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2015-12, Vol.289, p.142-152
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1770355228
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computation
Diffusion
Diffusion coefficient
Diffusion rate
Instability
Joining
Mathematical models
Numerical simulations of reaction–diffusion systems
PDE’s on surfaces
Reaction–diffusion systems
Stability
Turing instability
title Turing-type instabilities in bulk–surface reaction–diffusion systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turing-type%20instabilities%20in%20bulk%E2%80%93surface%20reaction%E2%80%93diffusion%20systems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Raetz,%20Andreas&rft.date=2015-12-01&rft.volume=289&rft.spage=142&rft.epage=152&rft.pages=142-152&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.02.050&rft_dat=%3Cproquest_cross%3E1770355228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770355228&rft_id=info:pmid/&rft_els_id=S0377042715001272&rfr_iscdi=true