Turing-type instabilities in bulk–surface reaction–diffusion systems
In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2015-12, Vol.289, p.142-152 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2015.02.050 |