Turing-type instabilities in bulk–surface reaction–diffusion systems

In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-12, Vol.289, p.142-152
1. Verfasser: Raetz, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this contribution we consider a coupled bulk–surface reaction–diffusion system and for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model. Thereby, we review results of linear stability analyses for both models showing that Turing-type instabilities can occur for equal lateral diffusion coefficients. The stability results are confirmed by new numerical results. As a specific application, we study a model for a spatial and reaction cycle of signalling molecules in a cell.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2015.02.050