Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system
Herein, hydroxypropyl-beta-cyclodextrin (HPβCD) inclusion complex (IC) of a hydrophobic drug, sulfisoxazole (SFS) was incorporated in hydroxypropyl cellulose (HPC) nanofibers (HPC/SFS/HPβCD-IC-NF) via electrospinning. SFS/HPβCD-IC was characterized by DSC to investigate the formation of inclusion co...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2015-04, Vol.128, p.331-338 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, hydroxypropyl-beta-cyclodextrin (HPβCD) inclusion complex (IC) of a hydrophobic drug, sulfisoxazole (SFS) was incorporated in hydroxypropyl cellulose (HPC) nanofibers (HPC/SFS/HPβCD-IC-NF) via electrospinning. SFS/HPβCD-IC was characterized by DSC to investigate the formation of inclusion complex and the stoichiometry of the complex was determined by Job's plot. Modeling studies were also performed on SFS/HPβCD-IC using ab initio technique. SEM images depicted the defect free uniform fibers and confirmed the incorporation of SFS/HPβCD-IC in nanofibers did not alter the fiber morphology. XRD analyses showed amorphous distribution of SFS/HPβCD-IC in the fiber mat. Release studies were performed in phosphate buffered saline (PBS). The results suggest higher amount of SFS released from HPC/SFS/HPβCD-IC-NF when compared to free SFS containing HPC nanofibers (HPC/SFS-NF). This was attributed to the increased solubility of SFS by inclusion complexation. Sandwich configurations were prepared by placing HPC/SFS/HPβCD-IC-NF between electrospun PCL nanofibrous mat (PCL-HPC/SFS/HPβCD-IC-NF). Consequently, PCL-HPC/SFS/HPβCD-IC-NF exhibited slower release of SFS as compared with HPC/SFS/HPβCD-IC-NF. This study may provide more efficient future strategies for developing delivery systems of hydrophobic drugs. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2015.02.019 |