Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach
By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370, 1993 ), we derive two asymptotic expansions for the scaled Laguerre polynomial as n →∞, where ν =4 n +2 α +2. One expansion holds uniformly in a right half-plane , which contains the cri...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2008-12, Vol.49 (1-4), p.331-372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370,
1993
), we derive two asymptotic expansions for the scaled Laguerre polynomial
as
n
→∞, where
ν
=4
n
+2
α
+2. One expansion holds uniformly in a right half-plane
, which contains the critical point
z
=1; the other expansion holds uniformly in a left half-plane
, which contains the other critical point
z
=0. The two half-planes together cover the entire complex
z
-plane. The critical points
z
=1 and
z
=0 correspond, respectively, to the turning point and the singularity of the differential equation satisfied by
. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-008-9159-x |