Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach

By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370, 1993 ), we derive two asymptotic expansions for the scaled Laguerre polynomial as n →∞, where ν =4 n +2 α +2. One expansion holds uniformly in a right half-plane , which contains the cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2008-12, Vol.49 (1-4), p.331-372
Hauptverfasser: Qiu, W.-Y., Wong, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370, 1993 ), we derive two asymptotic expansions for the scaled Laguerre polynomial as n →∞, where ν =4 n +2 α +2. One expansion holds uniformly in a right half-plane , which contains the critical point z =1; the other expansion holds uniformly in a left half-plane , which contains the other critical point z =0. The two half-planes together cover the entire complex z -plane. The critical points z =1 and z =0 correspond, respectively, to the turning point and the singularity of the differential equation satisfied by .
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-008-9159-x