Seismic behaviors of steel plate shear wall structures with construction details and materials
In order to have a systematic and comprehensive comparison of seismic behaviors of steel plate shear wall structures with different construction details, a numerical method was proposed, which was proved accurately to predict the performance of structures with published quasi-static tests. Then, eig...
Gespeichert in:
Veröffentlicht in: | Journal of constructional steel research 2015-04, Vol.107, p.194-210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to have a systematic and comprehensive comparison of seismic behaviors of steel plate shear wall structures with different construction details, a numerical method was proposed, which was proved accurately to predict the performance of structures with published quasi-static tests. Then, eight typical steel shear wall models with different structural construction details were established. Also an advanced stiffened low yield point steel plate shear wall was proposed to avoid excessive out-of-plane deformation. The seismic behaviors of above nine shear wall models were fully compared and analyzed, and key issues, such as energy-dissipating capacity, ductility, out-of-plane deformation and the effect of tension field on the columns were discussed in depth. The results showed that: in high-intensity seismic area, load-carrying capacity, hysteretic behaviors, failure modes, seismic ductility and economic performance should be taken into account comprehensively to choose the appropriate form of steel plate shear wall structure; the proposed low yield point steel plate shear wall with T type stiffened ribs could most effectively improve the energy dissipation capacity and ductility, and lessen the impact of tension field on the columns, besides, it had better load-carrying capacity and smallest out-of-plane deformation. This method provided a good way for improving the seismic behaviors of steel shear wall structures.
•A finite element method of thin steel plate shear wall under cyclic loading was proposed.•The construction details and materials could significantly affect the cyclic behaviors.•An advanced stiffened low yield point steel plate shear wall was proposed.•A suggestion was given to choose appropriate construction details for various situations. |
---|---|
ISSN: | 0143-974X 1873-5983 |
DOI: | 10.1016/j.jcsr.2015.01.007 |