Relation between the Dynamics of Glassy Clusters and Characteristic Features of their Energy Landscape

Based on a recently introduced metric for measuring distances between configurations, we introduce distance-energy (DE) plots to characterize the potential energy surface of clusters. Producing such plots is computationally feasible on the density functional level since it requires only a few hundre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-02, Vol.112 (8), Article 083401
Hauptverfasser: De, Sandip, Schaefer, Bastian, Sadeghi, Ali, Sicher, Michael, Kanhere, D. G., Goedecker, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a recently introduced metric for measuring distances between configurations, we introduce distance-energy (DE) plots to characterize the potential energy surface of clusters. Producing such plots is computationally feasible on the density functional level since it requires only a few hundred stable low energy configurations including the global minimum. By using standard criteria based on disconnectivity graphs and the dynamics of Lennard-Jones clusters, we show that the DE plots convey the necessary information about the character of the potential energy surface and allow us to distinguish between glassy and nonglassy systems. We then apply this analysis to real clusters at the density functional theory level and show that both glassy and nonglassy clusters can be found in simulations. It turns out that among our investigated clusters only those can be synthesized experimentally which exhibit a nonglassy landscape.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.112.083401