Orientation of luminescent excitons in layered nanomaterials

In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties 1 , 2 , 3 , 4 , 5 , 6 . Directional optical properties can be exploited to enhance the performance of optoelectronic devices 7 , 8 , 9 , optomechanical actuators 10 and metamaterials 11...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Nanotechnology 2013-04, Vol.8 (4), p.271-276
Hauptverfasser: Schuller, Jon A., Karaveli, Sinan, Schiros, Theanne, He, Keliang, Yang, Shyuan, Kymissis, Ioannis, Shan, Jie, Zia, Rashid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties 1 , 2 , 3 , 4 , 5 , 6 . Directional optical properties can be exploited to enhance the performance of optoelectronic devices 7 , 8 , 9 , optomechanical actuators 10 and metamaterials 11 . In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling—MoS 2 and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS 2 mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations. Energy-momentum spectroscopy is used to identify distinct intra- and interlayer exciton species in MoS 2 and a perylene derivative.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2013.20