The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP
Mechanical properties of AZ31B magnesium alloy were modified in this work by various processing routes of incremental equal channel angular pressing (I-ECAP) followed by heat treatment. Possible strategies for improving ductility and strength of the alloy were investigated. Processing by routes A an...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-06, Vol.638, p.20-29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanical properties of AZ31B magnesium alloy were modified in this work by various processing routes of incremental equal channel angular pressing (I-ECAP) followed by heat treatment. Possible strategies for improving ductility and strength of the alloy were investigated. Processing by routes A and BC showed that texture plays predominant role in controlling mechanical properties at room temperature. Four passes of I-ECAP by route C followed by annealing enhanced ductility up to 0.35 of true strain. It was found that tensile twinning was important in accommodating strain during tensile testing, which resulted in a very good hardening behaviour. The yield strength was improved to 300MPa by refining grain size to 0.8µm in I-ECAP at 150°C. The obtained structure and properties were shown to be stable up to 150°C. True strain at fracture was increased to 0.2 after annealing at 150°C without lowering strength. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2015.04.055 |