Spike-Time-Dependent Encoding for Neuromorphic Processors

This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM journal on emerging technologies in computing systems 2015-09, Vol.12 (3), p.1-21
Hauptverfasser: Zhao, Chenyuan, Wysocki, Bryant T, Liu, Yifang, Thiem, Clare D, McDonald, Nathan R, Yi, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect recovery for band-limited stimuli. In this article, we pattern the neural activities across multiple timescales and encode the sensory information using time-dependent temporal scales. The spike encoding methodologies for autonomous classification of time-series signatures are explored using near-chaotic reservoir computing. The proposed spiking neuron is compact, low power, and robust. A hardware implementation of these results is expected to produce an agile hardware implementation of time encoding as a signal conditioner for dynamical neural processor designs.
ISSN:1550-4832
1550-4840
DOI:10.1145/2738040