Spike-Time-Dependent Encoding for Neuromorphic Processors
This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect r...
Gespeichert in:
Veröffentlicht in: | ACM journal on emerging technologies in computing systems 2015-09, Vol.12 (3), p.1-21 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect recovery for band-limited stimuli. In this article, we pattern the neural activities across multiple timescales and encode the sensory information using time-dependent temporal scales. The spike encoding methodologies for autonomous classification of time-series signatures are explored using near-chaotic reservoir computing. The proposed spiking neuron is compact, low power, and robust. A hardware implementation of these results is expected to produce an agile hardware implementation of time encoding as a signal conditioner for dynamical neural processor designs. |
---|---|
ISSN: | 1550-4832 1550-4840 |
DOI: | 10.1145/2738040 |