Validation of Armadillo officinalis Dumèril, 1816 (Crustacea, Isopoda, Oniscidea) as a bioindicator: in vivo study of air benzene exposure

This study tests the potential for using Armadillo officinalis as a bioindicator of exposure to and activation of benzene metabolic pathways using an in vivo model. A. officinalis specimens collected in a natural reserve were divided into a control and three test groups exposed to 2.00, 5.32 or 9.09...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2015-04, Vol.114, p.171-178
Hauptverfasser: Agodi, A, Oliveri Conti, G, Barchitta, M, Quattrocchi, A, Lombardo, B M, Montesanto, G, Messina, G, Fiore, M, Ferrante, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study tests the potential for using Armadillo officinalis as a bioindicator of exposure to and activation of benzene metabolic pathways using an in vivo model. A. officinalis specimens collected in a natural reserve were divided into a control and three test groups exposed to 2.00, 5.32 or 9.09 µg/m(3) benzene for 24h. Three independent tests were performed to assess model reproducibility. Animals were dissected to obtain three pooled tissue samples per group: hepatopancreas (HEP), other organs and tissues (OOT), and exoskeleton (EXO). Muconic acid (MA), S-phenylmercapturic acid (S-PMA), two human metabolites of benzene, and changes in mtDNA copy number, a human biomarker of benzene exposure, were determined in each sample; benzene was determined only in EXO. MA was measured by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection, S-PMA by triple quadrupole mass spectrometer liquid chromatography with electro spray ionization (LC-MS-ESI-TQD), mtDNA by real-time quantitative PCR and end-point PCR, and benzene by quadrupole mass spectrometer head-space gas chromatography (HSGC-MS). MA and S-PMA levels rose both in HEP and OOT; EXO exhibited increasing benzene concentrations; and mtDNA copy number rose in HEP but not in OOT samples. Overall, our findings demonstrate that A. officinalis is a sensitive bioindicator of air benzene exposure and show for the first time its ability to reproduce human metabolic dynamics.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2015.01.011