Durable defense: robust and varied attachment of non-leaching poly"-onium" bactericidal coatings to reactive and inert surfaces
Developing antimicrobial coatings to eliminate biotic contamination is a critical need for all surfaces, including medical, industrial, and domestic materials. The wide variety of materials used in these fields, from natural polymers to metals, require coatings that not only are antimicrobial, but a...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2014-08, Vol.50 (67), p.9433-9442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing antimicrobial coatings to eliminate biotic contamination is a critical need for all surfaces, including medical, industrial, and domestic materials. The wide variety of materials used in these fields, from natural polymers to metals, require coatings that not only are antimicrobial, but also contain different surface chemistries for covalent immobilization. Alkyl "-onium" salts are potent biocides that have defied bacterial resistance mechanisms when confined to an interface. In this feature article, we highlight the various methods used to covalently immobilize bactericidal polymers to different surfaces and further examine the mechanistic aspects of biocidal action with these surface bound poly"-onium" salts. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c4cc02803a |