Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-07, Vol.639, p.705-716
Hauptverfasser: Montazeri-Pour, M., Parsa, M.H., Jafarian, H.R., Taieban, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2015.05.066