Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel

Hydrogen-related fracture behaviors in low-carbon (Fe-0.1wtpctC) and medium-carbon (Fe-0.4wtpctC) martensitic steels were characterized through crystallographic orientation analysis using electron backscattering diffraction. The martensitic steels with lower strength (Fe-0.1C specimen or Fe-0.4C spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2015-12, Vol.46 (12), p.5685-5696
Hauptverfasser: Shibata, Akinobu, Murata, Tamotsu, Takahashi, Hiroshi, Matsuoka, Takahiro, Tsuji, Nobuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen-related fracture behaviors in low-carbon (Fe-0.1wtpctC) and medium-carbon (Fe-0.4wtpctC) martensitic steels were characterized through crystallographic orientation analysis using electron backscattering diffraction. The martensitic steels with lower strength (Fe-0.1C specimen or Fe-0.4C specimen tempered at higher temperature) exhibited transgranular fracture, where fractured surfaces consisted of dimples and quasi-cleavage patterns. Crystallographic orientation analysis revealed that several of the micro-cracks that formed around the prior austenite grain boundaries propagated along {011} planes. In contrast, fracture surface morphologies of the martensitic steels with higher strength (Fe-0.4C specimen tempered at lower temperature) appeared to be intergranular-like. Crystallographic orientation analysis demonstrated that, on a microscopic level, the fracture surfaces comprised the facets parallel to {011} planes. These results suggest that the hydrogen-related fractures in martensitic steels with higher strength are not exactly intergranular at the prior austenite grain boundaries, but they are transgranular fractures propagated along {011} planes close to the prior austenite grain boundaries. A description of the mechanism of hydrogen-related fracture is proposed based on the results.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-015-3176-x