Doxorubicin-loaded NaYF4 :Yb/Tm–TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers
Abstract The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4 :Yb/Tm–TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo ne...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-07, Vol.57, p.93-106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4 :Yb/Tm–TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo near infrared (NIR)-triggered inorganic photodynamic therapy (PDT) and enhanced chemotherapy to overcome the multidrug resistance (MDR) in breast cancers. Using the up-conversion luminescence (UCL) performance of NaYF4 :Yb/Tm converting near-infrared (NIR) into ultraviolent (UV) lights, reactive oxygen species (ROS) were triggered from TiO2 inorganic photosensitizers for PDT under the irradiation of a 980 nm laser, by which the deep-penetration and low photo-damage could be reached. Moreover, nanocarrier delivery and folic acid (FA) targeting promoted the cellular uptake, and accelerated the release of DOX in drug-sensitive MCF-7 and resistant MCF-7/ADR cells. The toxicity assessment in vitro and in vivo revealed the good biocompatibility of the as-prepared FA-NPs-DOX nanocomposites. By the combination of enhanced chemotherapy and NIR-triggered inorganic PDT, the viability of MCF-7/ADR cells could decrease by 53.5%, and the inhibition rate of MCF-7/ADR tumors could increase up to 90.33%, compared with free DOX. Therefore, the MDR of breast cancers could be obviously overcome by enhanced chemotherapy and NIR-triggered inorganic PDT of FA-NPs-DOX nanocomposites under the excitation of a 980 nm laser. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2015.04.006 |