Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, Homotopy Analysis Method (HAM) is applied to numerically approximate the eigenvalues of the fractional Sturm-Liouville problems. The eigenvalues are not unique. These multiple solutions, i.e., eigenvalues, can be calculated by starting the HAM algorithm with one and the same initial g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2010-08, Vol.54 (4), p.521-532
Hauptverfasser: Abbasbandy, Saeid, Shirzadi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Homotopy Analysis Method (HAM) is applied to numerically approximate the eigenvalues of the fractional Sturm-Liouville problems. The eigenvalues are not unique. These multiple solutions, i.e., eigenvalues, can be calculated by starting the HAM algorithm with one and the same initial guess and linear operator . It can be seen in this paper that the auxiliary parameter which controls the convergence of the HAM approximate series solutions, has another important application. This important application is predicting and calculating multiple solutions.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-009-9351-7