Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, Homotopy Analysis Method (HAM) is applied to numerically approximate the eigenvalues of the fractional Sturm-Liouville problems. The eigenvalues are not unique. These multiple solutions, i.e., eigenvalues, can be calculated by starting the HAM algorithm with one and the same initial g...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2010-08, Vol.54 (4), p.521-532 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, Homotopy Analysis Method (HAM) is applied to numerically approximate the eigenvalues of the fractional Sturm-Liouville problems. The eigenvalues are not unique. These multiple solutions, i.e., eigenvalues, can be calculated by starting the HAM algorithm with one and the same initial guess and linear operator
. It can be seen in this paper that the auxiliary parameter
which controls the convergence of the HAM approximate series solutions, has another important application. This important application is predicting and calculating multiple solutions. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-009-9351-7 |