Autonomous navigation for a group of satellites with star sensors and inter-satellite links

This paper studies the autonomous navigation method for a group of satellites based on relative position measurements, which can be obtained by using inter-satellite links for measuring relative range and navigation star sensors for measuring relative bearing. For the satellites that are far from ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2013-05, Vol.86, p.10-23
Hauptverfasser: Kai, Xiong, Chunling, Wei, Liangdong, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the autonomous navigation method for a group of satellites based on relative position measurements, which can be obtained by using inter-satellite links for measuring relative range and navigation star sensors for measuring relative bearing. For the satellites that are far from each other, it may be difficult to obtain relative bearing measurement due to poor visibility. To address this difficulty, this paper proposes a novel scheme, where three satellites, whose relative ranges are rather small such that the relative bearings can be observed, are used as beacons for the navigation of the other satellites that are invisible. The feasibility of the proposed navigation scheme is analyzed by using the Cramer-Rao lower bound (CRLB), with the consideration of the availability of relative bearing measurements. In addition, the multiple model adaptive estimation (MMAE) algorithm is adopted to improve the convergence speed of the estimator in the presence of large initial errors. Simulation results illustrate the high performance of the proposed scheme. ► A novel scheme is proposed to determine the position of a group of satellites. ► The performance of the scheme is evaluated with the consideration of the visibility. ► The multiple model adaptive estimation is used to improve the navigation performance.
ISSN:0094-5765
1879-2030
DOI:10.1016/j.actaastro.2012.12.001