Robust force tracking control scheme for MR dampers

SUMMARY This paper describes a novel force tracking control scheme for magnetorheological (MR) dampers. The feed forward, which is derived by a control‐oriented mapping approach to reduce modelling effort of the inverse MR damper behaviour, compensates for the main steady‐state nonlinearity of the M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2015-12, Vol.22 (12), p.1373-1395
1. Verfasser: Weber, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY This paper describes a novel force tracking control scheme for magnetorheological (MR) dampers. The feed forward, which is derived by a control‐oriented mapping approach to reduce modelling effort of the inverse MR damper behaviour, compensates for the main steady‐state nonlinearity of the MR damper force and thereby linearizes the plant. The resulting force tracking error due to model imperfections and parameter uncertainties is reduced by parallel proportional and integral feedback gains that are formulated based on the absolute values of actual MR damper force and desired control force due to the semi‐active constraint of the MR damper force. The feedback is enriched by an anti‐reset windup to account for MR damper current constraints and the concept of current reversal to accelerate demagnetization. The experimental validations of the force tracking control scheme on a rotational and a long‐stroke MR damper demonstrate its robustness and efficacy. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:1545-2255
1545-2263
DOI:10.1002/stc.1750