Backstepping Control Design for Vehicle Active Restraint Systems

Active control of vehicle restraint systems has been extensively investigated in past decades. Many promising results have shown that a seat-belt system can be controlled in real-time to minimize human driver/occupant's injuries by reducing the human chest acceleration after a frontal impact. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2013-01, Vol.135 (1)
Hauptverfasser: Gu, Edward Y.-L., Das, Manohar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active control of vehicle restraint systems has been extensively investigated in past decades. Many promising results have shown that a seat-belt system can be controlled in real-time to minimize human driver/occupant's injuries by reducing the human chest acceleration after a frontal impact. This paper presents a new nonlinear model that groups the seat-belt restraint system and the human driver's nonlinear high-coupling dynamics together to form a cascaded system. By using a backstepping design procedure, a global control law is developed and aimed to actively and continuously adjust the seat-belt strain force so as to interact both the human's shoulder/chest and waist. Both the control theory development and 3D graphical simulation study show that the overall system stability is well achieved. Even if up to a freeway speed, such as at 65 mph, the accelerations of the three major human body joints: lumber, thorax, and neck after a frontal collision can still be reduced significantly.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.4007549