Probing the electronic properties and charge state of gold nanoparticles on ultrathin MgO versus thick doped CaO films

Electron transfer into metal nanoparticles on oxide supports is associated with unusual morphological, electronic, and chemical properties of the charged system. Two fundamental charging routes have been identified so far, which are electron tunneling through ultrathin oxide films supported by a bul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075444
Hauptverfasser: Cui, Yi, Stiehler, Christian, Nilius, Niklas, Freund, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron transfer into metal nanoparticles on oxide supports is associated with unusual morphological, electronic, and chemical properties of the charged system. Two fundamental charging routes have been identified so far, which are electron tunneling through ultrathin oxide films supported by a bulk metal and charge donation from single-ion impurities embedded in the oxide matrix. In this study, we have investigated whether both routes lead to the formation of metal deposits with identical properties. For this purpose, Au islands have been prepared on 1 - 2 ML thin MgO / Ag(001) layers and on 25-ML-thick CaO films doped with Mo impurities. The morphological and electronic properties of the islands were analyzed with low-temperature scanning tunneling microscopy (STM) and spectroscopy. In both systems, pronounced electron confinement effects are observed in the nanostructures, arising from the quantization of one and the same Au electronic band. Moreover, clear experimental signatures for a charge transfer into the islands are found, such as a layer-by-layer growth of the ad-metal and a negative contrast of the oxide region around the deposits in STM images. Our data provide evidence that the charged nanostructures exhibit comparable properties independent of the origin of the extra electrons. This agreement suggests that ultrathin oxide films may be used as model systems for doped bulk oxides, as used in heterogeneous catalysis.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.92.075444