A General Approach for Rectified Mass Diffusion of Gas Bubbles in Liquids Under Acoustic Excitation

Rectified mass diffusion serves as an important mechanism for dissolution or growth of gas bubbles under acoustic excitation with many applications in acoustical, chemical and biomedical engineering. In this paper, a general approach for predicting rectified mass diffusion phenomenon is proposed bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2014-04, Vol.136 (4)
Hauptverfasser: Zhang, Yuning, Li, Shengcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rectified mass diffusion serves as an important mechanism for dissolution or growth of gas bubbles under acoustic excitation with many applications in acoustical, chemical and biomedical engineering. In this paper, a general approach for predicting rectified mass diffusion phenomenon is proposed based on the equation of bubble motion with liquid compressibility. Nonuniform pressure inside gas bubbles is considered in the approach through employing a well-established framework relating with thermal effects during gas bubble oscillations. Energy dissipation mechanisms (i.e., viscous, thermal, and acoustic dissipation) and surface tension are also included in the approach. Comparing with previous analytical investigations, present approach mainly improves the predictions of rectified mass diffusion in the regions far above resonance and regions with frequencies megahertz and above. Mechanisms for the improvements are shown and discussed together with valid regions and limitations of present approach.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.4026089