Thermal equilibrium/disequilibrium features in the excited-state temperature of atomic helium in MAP-II divertor simulator

Doppler–Stark spectrometry and laser Thomson scattering diagnostics for helium plasmas were applied to the MAP-II (material and plasma) steady-state linear divertor simulator at the University of Tokyo. In recombining plasmas, as the volumetric recombination proceeded, atomic, ionic and electron tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2015-08, Vol.463, p.902-906
1. Verfasser: Kado, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doppler–Stark spectrometry and laser Thomson scattering diagnostics for helium plasmas were applied to the MAP-II (material and plasma) steady-state linear divertor simulator at the University of Tokyo. In recombining plasmas, as the volumetric recombination proceeded, atomic, ionic and electron temperatures converged to the same values, which indicated the achievement of thermal equilibrium. On the other hand, in ionizing plasmas, in addition to the collisional heating of bulk atoms, excess heating of atoms in the high principal quantum number states (above Griem’s boundary) was observed. This disequilibrium feature can be attributed to the presence of two prevailing conditions: that the characteristic time of the charge-exchange process of the atoms with ions in the system became shorter than the lifetime of the excited atoms spent above Griem’s boundary, and that the population influx from above Griem’s boundary is considerably larger than that from below the boundary.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2014.12.089