Dry granular avalanche down a flume: Choice of discrete element simulation parameters

This paper presents a method to assign soft-sphere contact model parameters in a discrete-element simulation with which we can reproduce the experimentally measured avalanche dynamics of finite dry granular mass down a flume. We adopt the simplest linear model in which interaction force is decompose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2013-12, Vol.25 (12)
Hauptverfasser: Yang, F-L, Chang, W T, Huang, Y T, Hsieh, SH, Chen, C S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a method to assign soft-sphere contact model parameters in a discrete-element simulation with which we can reproduce the experimentally measured avalanche dynamics of finite dry granular mass down a flume. We adopt the simplest linear model in which interaction force is decomposed along or tangent to the contact normal. The model parameters are chosen uniquely to satisfy theoretical models or to meet experimental evidences at either the particle or the bulk size level. The normal mode parameters are chosen specifically to ensure Hertzian contact time (but not its force-displacement history) and the resulting loss of particle kinetic energy, characterized by a measured coefficient of restitution, for each pair of colliding surfaces. We follow the literature to assign the tangential spring constant according to an elasticity model but propose a method to assign the friction coefficient using a measured bulk property that characterizes the bulk discharge volume flow rate. The linear contact model with the assigned parameters are evaluated by comparing the simulated bulk avalanche dynamics down three slopes to the experimental data, including instantaneous particle trajectories and bulk unsteady velocity profile. Satisfying quantitative agreement can be obtained except at the free surface and the early-time front propagation velocity.
ISSN:1070-6631
0031-9171
1089-7666
DOI:10.1063/1.4846715