Free Convection in Asymmetrically Heated Vertical Channels With Opposing Buoyancy Forces

Laser interferometry and flow visualization were used to study free convective heat transfer inside a vertical channel. Most studies in the literature have investigated buoyancy forces in a single direction. The study presented here investigated opposing buoyancy forces, where one wall is warmer tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2014-06, Vol.136 (6)
Hauptverfasser: Roeleveld, D, Naylor, D, Leong, W. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser interferometry and flow visualization were used to study free convective heat transfer inside a vertical channel. Most studies in the literature have investigated buoyancy forces in a single direction. The study presented here investigated opposing buoyancy forces, where one wall is warmer than the ambient and the other wall is cooler than the ambient. An experimental model of an isothermally, asymmetrically heated vertical channel was constructed. Interferometry provided temperature field visualization and flow visualization was used to obtain the streamlines. Experiments were carried out over a range of aspect ratios between 8.8 and 26.4, using temperature ratios of 0, −0.5, and −0.75. These conditions provide a modified Rayleigh number range of approximately 5 to 1100. In addition, the measured local and average Nusselt number data were compared to numerical solutions obtained using ANSYS FLUENT. Air was the fluid of interest. So the Prandtl number was fixed at 0.71. Numerical solutions were obtained for modified Rayleigh numbers ranging from the laminar fully developed flow regime to the turbulent isolated boundary layer regime. A semi-empirical correlation of the average Nusselt number was developed based on the experimental data.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.4026218