In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (i.e., total AChE) in human blood are biomarkers for theranostic monitoring of organophosphate neurotoxin-poisoned patients. We developed an ultra-sensitive method to detect the total AChE activity in sub-microliter human whole...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2015-06, Vol.68, p.648-653 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (i.e., total AChE) in human blood are biomarkers for theranostic monitoring of organophosphate neurotoxin-poisoned patients. We developed an ultra-sensitive method to detect the total AChE activity in sub-microliter human whole blood based on in situ induced metal-enhanced fluorescence (MEF). Both AChE and BChE can catalyze the hydrolysis of the acetylthiocholine (ATCh) substrate and produce positively-charged thiocholine (TCh). TCh can reverse the negatively-charged surface of core-shell Ag@SiO2 nanoparticles (NPs). The negatively-charged fluorescent dye (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) is then confined to the surface of Ag@SiO2 NPs and generates an enhanced fluorescence signal in situ. Changes in the surface charge of Ag@SiO2 NPs are monitored by Zeta potential, and the MEF effect is confirmed by the measurements of fluorescence time decay. AChE activity has a dynamic range of 0 U/mL to 0.005 U/mL and a detection limit of 0.05 mU/mL. The total AChE activity in the sub-microliter human whole blood could be determined; the results were further validated. Therefore, combining the AChE catalytic reaction with MEF provides a simple, ultra-sensitive, and cost-effective "in situ MEF" approach to determine the total AChE activity in human whole blood sample down to sub-microliters without matrix interferences. The strategy also allows potential usage in other tissues and other fields. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2015.01.061 |