Enigmatic 4/11 state: a prototype for unconventional fractional quantum Hall effect
The origin of the fractional quantum Hall effect (FQHE) at 4/11 and 5/13 has remained controversial. We make a compelling case that the FQHE is possible here for fully spin polarized composite fermions, but with an unconventional underlying physics. Thanks to a rather unusual interaction between com...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-01, Vol.112 (1), p.016801-016801, Article 016801 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The origin of the fractional quantum Hall effect (FQHE) at 4/11 and 5/13 has remained controversial. We make a compelling case that the FQHE is possible here for fully spin polarized composite fermions, but with an unconventional underlying physics. Thanks to a rather unusual interaction between composite fermions, the FQHE here results from the suppression of pairs with a relative angular momentum of three rather than one, confirming the exotic mechanism proposed by Wójs, Yi, and Quinn [Phys. Rev. B 69, 205322 (2004)]. We predict that the 4/11 state reported a decade ago by Pan et al. [Phys. Rev. Lett. 90, 016801 (2003)] is a conventional partially spin polarized FQHE of composite fermions, and we estimate the Zeeman energy where a phase transition into the unconventional fully spin polarized state will occur. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.112.016801 |