On the matching method and the Goldstone theorem in holography

A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-07, Vol.2013 (7), p.1-16, Article 56
Hauptverfasser: Bajc, Borut, Lugo, Adrián R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 7
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Bajc, Borut
Lugo, Adrián R.
description A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at q 2 = 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.
doi_str_mv 10.1007/JHEP07(2013)056
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770299462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUws0ZiKUPo9SN2vCChqrSgSmWA2Qqx06RK7GKnQ_89LmGokJjuQ9-5j4PQLYYHDCCmr8v5G4gJAUzvIeNnaISByDRnQp6f5JfoKoQtAM6whBF6XNukr03SFX1ZN3aTdKavnU4Kq3_6C9fq0DtrjpXzpksam9SudRtf7OrDNbqoijaYm984Rh_P8_fZMl2tFy-zp1VaUkb7lBiqc1EZnlEpBMc8K3nFDBHFJ4NKUKJlVmrIMw6EcyJJSfMqB8a0lJpITcdoMszdefe1N6FXXRNK07aFNW4fFBYiPigZJxG9-4Nu3d7beJ2Ke4mkGHMWqelAld6F4E2ldr7pCn9QGNTRTzX4qY5-quhnVMCgCJG0G-NP5v4j-QahTXTS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652931164</pqid></control><display><type>article</type><title>On the matching method and the Goldstone theorem in holography</title><source>Springer Nature OA/Free Journals</source><creator>Bajc, Borut ; Lugo, Adrián R.</creator><creatorcontrib>Bajc, Borut ; Lugo, Adrián R.</creatorcontrib><description>A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at q 2 = 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2013)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundaries ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Matching ; Mathematical analysis ; Operators ; Perturbation methods ; Physics ; Physics and Astronomy ; Poles ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; String Theory ; Theorems</subject><ispartof>The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-16, Article 56</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</citedby><cites>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2013)056$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP07(2013)056$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41125,41493,42194,42562,51324,51581</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP07(2013)056$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Bajc, Borut</creatorcontrib><creatorcontrib>Lugo, Adrián R.</creatorcontrib><title>On the matching method and the Goldstone theorem in holography</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at q 2 = 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</description><subject>Boundaries</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poles</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><subject>Theorems</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDtPwzAUhS0EEqUws0ZiKUPo9SN2vCChqrSgSmWA2Qqx06RK7GKnQ_89LmGokJjuQ9-5j4PQLYYHDCCmr8v5G4gJAUzvIeNnaISByDRnQp6f5JfoKoQtAM6whBF6XNukr03SFX1ZN3aTdKavnU4Kq3_6C9fq0DtrjpXzpksam9SudRtf7OrDNbqoijaYm984Rh_P8_fZMl2tFy-zp1VaUkb7lBiqc1EZnlEpBMc8K3nFDBHFJ4NKUKJlVmrIMw6EcyJJSfMqB8a0lJpITcdoMszdefe1N6FXXRNK07aFNW4fFBYiPigZJxG9-4Nu3d7beJ2Ke4mkGHMWqelAld6F4E2ldr7pCn9QGNTRTzX4qY5-quhnVMCgCJG0G-NP5v4j-QahTXTS</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Bajc, Borut</creator><creator>Lugo, Adrián R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>On the matching method and the Goldstone theorem in holography</title><author>Bajc, Borut ; Lugo, Adrián R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poles</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajc, Borut</creatorcontrib><creatorcontrib>Lugo, Adrián R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bajc, Borut</au><au>Lugo, Adrián R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the matching method and the Goldstone theorem in holography</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>2013</volume><issue>7</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at q 2 = 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2013)056</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-16, Article 56
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770299462
source Springer Nature OA/Free Journals
subjects Boundaries
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Matching
Mathematical analysis
Operators
Perturbation methods
Physics
Physics and Astronomy
Poles
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Scalars
String Theory
Theorems
title On the matching method and the Goldstone theorem in holography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T20%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20matching%20method%20and%20the%20Goldstone%20theorem%20in%20holography&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bajc,%20Borut&rft.date=2013-07-01&rft.volume=2013&rft.issue=7&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2013)056&rft_dat=%3Cproquest_C6C%3E1770299462%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652931164&rft_id=info:pmid/&rfr_iscdi=true