On the matching method and the Goldstone theorem in holography
A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the p...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2013-07, Vol.2013 (7), p.1-16, Article 56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2013 |
creator | Bajc, Borut Lugo, Adrián R. |
description | A
bstract
We study the transition of a scalar field in a fixed
AdS
d+1
background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at
q
2
= 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance. |
doi_str_mv | 10.1007/JHEP07(2013)056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770299462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770299462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUws0ZiKUPo9SN2vCChqrSgSmWA2Qqx06RK7GKnQ_89LmGokJjuQ9-5j4PQLYYHDCCmr8v5G4gJAUzvIeNnaISByDRnQp6f5JfoKoQtAM6whBF6XNukr03SFX1ZN3aTdKavnU4Kq3_6C9fq0DtrjpXzpksam9SudRtf7OrDNbqoijaYm984Rh_P8_fZMl2tFy-zp1VaUkb7lBiqc1EZnlEpBMc8K3nFDBHFJ4NKUKJlVmrIMw6EcyJJSfMqB8a0lJpITcdoMszdefe1N6FXXRNK07aFNW4fFBYiPigZJxG9-4Nu3d7beJ2Ke4mkGHMWqelAld6F4E2ldr7pCn9QGNTRTzX4qY5-quhnVMCgCJG0G-NP5v4j-QahTXTS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652931164</pqid></control><display><type>article</type><title>On the matching method and the Goldstone theorem in holography</title><source>Springer Nature OA/Free Journals</source><creator>Bajc, Borut ; Lugo, Adrián R.</creator><creatorcontrib>Bajc, Borut ; Lugo, Adrián R.</creatorcontrib><description>A
bstract
We study the transition of a scalar field in a fixed
AdS
d+1
background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at
q
2
= 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2013)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundaries ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Matching ; Mathematical analysis ; Operators ; Perturbation methods ; Physics ; Physics and Astronomy ; Poles ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; String Theory ; Theorems</subject><ispartof>The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-16, Article 56</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</citedby><cites>FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2013)056$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP07(2013)056$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41127,41495,42196,42564,51326,51583</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP07(2013)056$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Bajc, Borut</creatorcontrib><creatorcontrib>Lugo, Adrián R.</creatorcontrib><title>On the matching method and the Goldstone theorem in holography</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We study the transition of a scalar field in a fixed
AdS
d+1
background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at
q
2
= 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</description><subject>Boundaries</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poles</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><subject>Theorems</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDtPwzAUhS0EEqUws0ZiKUPo9SN2vCChqrSgSmWA2Qqx06RK7GKnQ_89LmGokJjuQ9-5j4PQLYYHDCCmr8v5G4gJAUzvIeNnaISByDRnQp6f5JfoKoQtAM6whBF6XNukr03SFX1ZN3aTdKavnU4Kq3_6C9fq0DtrjpXzpksam9SudRtf7OrDNbqoijaYm984Rh_P8_fZMl2tFy-zp1VaUkb7lBiqc1EZnlEpBMc8K3nFDBHFJ4NKUKJlVmrIMw6EcyJJSfMqB8a0lJpITcdoMszdefe1N6FXXRNK07aFNW4fFBYiPigZJxG9-4Nu3d7beJ2Ke4mkGHMWqelAld6F4E2ldr7pCn9QGNTRTzX4qY5-quhnVMCgCJG0G-NP5v4j-QahTXTS</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Bajc, Borut</creator><creator>Lugo, Adrián R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>On the matching method and the Goldstone theorem in holography</title><author>Bajc, Borut ; Lugo, Adrián R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2e3d87fe6539776165c6f4e27ab40f732d95cd08560266292c38f8044d99d29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poles</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajc, Borut</creatorcontrib><creatorcontrib>Lugo, Adrián R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bajc, Borut</au><au>Lugo, Adrián R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the matching method and the Goldstone theorem in holography</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>2013</volume><issue>7</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We study the transition of a scalar field in a fixed
AdS
d+1
background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at
q
2
= 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2013)056</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-16, Article 56 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770299462 |
source | Springer Nature OA/Free Journals |
subjects | Boundaries Classical and Quantum Gravitation Elementary Particles High energy physics Matching Mathematical analysis Operators Perturbation methods Physics Physics and Astronomy Poles Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory Scalars String Theory Theorems |
title | On the matching method and the Goldstone theorem in holography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T10%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20matching%20method%20and%20the%20Goldstone%20theorem%20in%20holography&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bajc,%20Borut&rft.date=2013-07-01&rft.volume=2013&rft.issue=7&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2013)056&rft_dat=%3Cproquest_C6C%3E1770299462%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652931164&rft_id=info:pmid/&rfr_iscdi=true |