On the matching method and the Goldstone theorem in holography
A bstract We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the p...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2013-07, Vol.2013 (7), p.1-16, Article 56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We study the transition of a scalar field in a fixed
AdS
d+1
background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at
q
2
= 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP07(2013)056 |