Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids

A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-02, Vol.2013 (2), p.1-36, Article 122
Hauptverfasser: Blumenhagen, Ralph, Deser, Andreas, Plauschinn, Erik, Rennecke, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 2
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Blumenhagen, Ralph
Deser, Andreas
Plauschinn, Erik
Rennecke, Felix
description A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure β and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order α ′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.
doi_str_mv 10.1007/JHEP02(2013)122
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770298244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770298244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhYMoWKtnrwEvFYzd2d0km6OUapWiHux52e5OQkqSjbupkH9vSnoogpeZYXjvMfMFwS2QRyAknb-tlp-EzigBdg-UngUTIDSLBE-z85P5MrjyfkcIxJCRSbB5t01UoK2xc6UO_VCbwj-Evq_bCnU37AqnfsquD1VjQlPmOTpsulJV4dHWhzYP1yWGqipw62xp_HVwkavK482xT4PN8_JrsYrWHy-vi6d1pDnJuijmlINOBSHIzRYM4wYZQG4wj4ElOtkqIQQ1WgETCVFaU0DCmEIjtBaMTYPZmNs6-71H38m69BqrSjVo915Cmg5_C8r5IL37I93ZvWuG6yQkMRUpFTwZVPNRpZ313mEuW1fWyvUSiDxgliNmecAsB8yDg4wO3x7QoTvJ_cfyC6Ybfz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652872846</pqid></control><display><type>article</type><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><source>Springer Nature OA Free Journals</source><creator>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</creator><creatorcontrib>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</creatorcontrib><description>A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure β and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order α ′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2013)122</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus ; Classical and Quantum Gravitation ; Couplings ; Dilatons ; Elementary Particles ; Equations of motion ; Gravitation ; High energy physics ; Lie groups ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2013-02, Vol.2013 (2), p.1-36, Article 122</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</citedby><cites>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2013)122$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP02(2013)122$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP02(2013)122$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Blumenhagen, Ralph</creatorcontrib><creatorcontrib>Deser, Andreas</creatorcontrib><creatorcontrib>Plauschinn, Erik</creatorcontrib><creatorcontrib>Rennecke, Felix</creatorcontrib><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure β and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order α ′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</description><subject>Calculus</subject><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Dilatons</subject><subject>Elementary Particles</subject><subject>Equations of motion</subject><subject>Gravitation</subject><subject>High energy physics</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLw0AQhYMoWKtnrwEvFYzd2d0km6OUapWiHux52e5OQkqSjbupkH9vSnoogpeZYXjvMfMFwS2QRyAknb-tlp-EzigBdg-UngUTIDSLBE-z85P5MrjyfkcIxJCRSbB5t01UoK2xc6UO_VCbwj-Evq_bCnU37AqnfsquD1VjQlPmOTpsulJV4dHWhzYP1yWGqipw62xp_HVwkavK482xT4PN8_JrsYrWHy-vi6d1pDnJuijmlINOBSHIzRYM4wYZQG4wj4ElOtkqIQQ1WgETCVFaU0DCmEIjtBaMTYPZmNs6-71H38m69BqrSjVo915Cmg5_C8r5IL37I93ZvWuG6yQkMRUpFTwZVPNRpZ313mEuW1fWyvUSiDxgliNmecAsB8yDg4wO3x7QoTvJ_cfyC6Ybfz8</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Blumenhagen, Ralph</creator><creator>Deser, Andreas</creator><creator>Plauschinn, Erik</creator><creator>Rennecke, Felix</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><author>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calculus</topic><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Dilatons</topic><topic>Elementary Particles</topic><topic>Equations of motion</topic><topic>Gravitation</topic><topic>High energy physics</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blumenhagen, Ralph</creatorcontrib><creatorcontrib>Deser, Andreas</creatorcontrib><creatorcontrib>Plauschinn, Erik</creatorcontrib><creatorcontrib>Rennecke, Felix</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blumenhagen, Ralph</au><au>Deser, Andreas</au><au>Plauschinn, Erik</au><au>Rennecke, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>2013</volume><issue>2</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><artnum>122</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure β and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order α ′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2013)122</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-02, Vol.2013 (2), p.1-36, Article 122
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770298244
source Springer Nature OA Free Journals
subjects Calculus
Classical and Quantum Gravitation
Couplings
Dilatons
Elementary Particles
Equations of motion
Gravitation
High energy physics
Lie groups
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-geometric%20strings,%20symplectic%20gravity%20and%20differential%20geometry%20of%20Lie%20algebroids&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Blumenhagen,%20Ralph&rft.date=2013-02-01&rft.volume=2013&rft.issue=2&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.artnum=122&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2013)122&rft_dat=%3Cproquest_C6C%3E1770298244%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652872846&rft_id=info:pmid/&rfr_iscdi=true