Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids
A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2013-02, Vol.2013 (2), p.1-36, Article 122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2013 |
creator | Blumenhagen, Ralph Deser, Andreas Plauschinn, Erik Rennecke, Felix |
description | A
bstract
Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called
β
-diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure
β
and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order
α
′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed. |
doi_str_mv | 10.1007/JHEP02(2013)122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770298244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770298244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhYMoWKtnrwEvFYzd2d0km6OUapWiHux52e5OQkqSjbupkH9vSnoogpeZYXjvMfMFwS2QRyAknb-tlp-EzigBdg-UngUTIDSLBE-z85P5MrjyfkcIxJCRSbB5t01UoK2xc6UO_VCbwj-Evq_bCnU37AqnfsquD1VjQlPmOTpsulJV4dHWhzYP1yWGqipw62xp_HVwkavK482xT4PN8_JrsYrWHy-vi6d1pDnJuijmlINOBSHIzRYM4wYZQG4wj4ElOtkqIQQ1WgETCVFaU0DCmEIjtBaMTYPZmNs6-71H38m69BqrSjVo915Cmg5_C8r5IL37I93ZvWuG6yQkMRUpFTwZVPNRpZ313mEuW1fWyvUSiDxgliNmecAsB8yDg4wO3x7QoTvJ_cfyC6Ybfz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652872846</pqid></control><display><type>article</type><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><source>Springer Nature OA Free Journals</source><creator>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</creator><creatorcontrib>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</creatorcontrib><description>A
bstract
Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called
β
-diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure
β
and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order
α
′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2013)122</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus ; Classical and Quantum Gravitation ; Couplings ; Dilatons ; Elementary Particles ; Equations of motion ; Gravitation ; High energy physics ; Lie groups ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2013-02, Vol.2013 (2), p.1-36, Article 122</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</citedby><cites>FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2013)122$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP02(2013)122$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP02(2013)122$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Blumenhagen, Ralph</creatorcontrib><creatorcontrib>Deser, Andreas</creatorcontrib><creatorcontrib>Plauschinn, Erik</creatorcontrib><creatorcontrib>Rennecke, Felix</creatorcontrib><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called
β
-diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure
β
and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order
α
′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</description><subject>Calculus</subject><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Dilatons</subject><subject>Elementary Particles</subject><subject>Equations of motion</subject><subject>Gravitation</subject><subject>High energy physics</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLw0AQhYMoWKtnrwEvFYzd2d0km6OUapWiHux52e5OQkqSjbupkH9vSnoogpeZYXjvMfMFwS2QRyAknb-tlp-EzigBdg-UngUTIDSLBE-z85P5MrjyfkcIxJCRSbB5t01UoK2xc6UO_VCbwj-Evq_bCnU37AqnfsquD1VjQlPmOTpsulJV4dHWhzYP1yWGqipw62xp_HVwkavK482xT4PN8_JrsYrWHy-vi6d1pDnJuijmlINOBSHIzRYM4wYZQG4wj4ElOtkqIQQ1WgETCVFaU0DCmEIjtBaMTYPZmNs6-71H38m69BqrSjVo915Cmg5_C8r5IL37I93ZvWuG6yQkMRUpFTwZVPNRpZ313mEuW1fWyvUSiDxgliNmecAsB8yDg4wO3x7QoTvJ_cfyC6Ybfz8</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Blumenhagen, Ralph</creator><creator>Deser, Andreas</creator><creator>Plauschinn, Erik</creator><creator>Rennecke, Felix</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</title><author>Blumenhagen, Ralph ; Deser, Andreas ; Plauschinn, Erik ; Rennecke, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-54241c7800e4db1d34de311fdef5136c6ba8882dca13860acc21e033aed8cc833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Calculus</topic><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Dilatons</topic><topic>Elementary Particles</topic><topic>Equations of motion</topic><topic>Gravitation</topic><topic>High energy physics</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blumenhagen, Ralph</creatorcontrib><creatorcontrib>Deser, Andreas</creatorcontrib><creatorcontrib>Plauschinn, Erik</creatorcontrib><creatorcontrib>Rennecke, Felix</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blumenhagen, Ralph</au><au>Deser, Andreas</au><au>Plauschinn, Erik</au><au>Rennecke, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>2013</volume><issue>2</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><artnum>122</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called
β
-diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure
β
and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order
α
′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2013)122</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2013-02, Vol.2013 (2), p.1-36, Article 122 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770298244 |
source | Springer Nature OA Free Journals |
subjects | Calculus Classical and Quantum Gravitation Couplings Dilatons Elementary Particles Equations of motion Gravitation High energy physics Lie groups Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-geometric%20strings,%20symplectic%20gravity%20and%20differential%20geometry%20of%20Lie%20algebroids&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Blumenhagen,%20Ralph&rft.date=2013-02-01&rft.volume=2013&rft.issue=2&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.artnum=122&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2013)122&rft_dat=%3Cproquest_C6C%3E1770298244%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652872846&rft_id=info:pmid/&rfr_iscdi=true |