Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids

A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-02, Vol.2013 (2), p.1-36, Article 122
Hauptverfasser: Blumenhagen, Ralph, Deser, Andreas, Plauschinn, Erik, Rennecke, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called β -diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure β and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order α ′-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2013)122