Measurement of Interface Thermal Resistance With Neutron Diffraction
A noncontact, nondestructive neutron diffraction technique for measuring thermal resistance of buried material interfaces in bulk samples, inaccessible to thermocouple measurements, is described. The technique uses spatially resolved neutron diffraction measurements to measure temperature, and analy...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2014-03, Vol.136 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A noncontact, nondestructive neutron diffraction technique for measuring thermal resistance of buried material interfaces in bulk samples, inaccessible to thermocouple measurements, is described. The technique uses spatially resolved neutron diffraction measurements to measure temperature, and analytical or numerical methods to calculate the corresponding thermal resistance. It was tested at the VULCAN instrument of the Spallation Neutron Source, Oak Ridge National Laboratories on a stack of three 6061 alloy aluminum plates (heat-source, middle-plate, and heat-sink), held in dry thermal contact, at low pressure, in ambient air. The results agreed with thermocouple-based measurements. This technique is applicable to all crystalline materials and most interface configurations, and it can be used for the characterization of thermal resistance across interfaces in actual engineering parts under nonambient conditions and/or in moving/rotating systems. |
---|---|
ISSN: | 0022-1481 1528-8943 |
DOI: | 10.1115/1.4025500 |