Convergence theorem for the Haar wavelet based discretization method

The accuracy issues of Haar wavelet method are studied. The order of convergence as well as error bound of the Haar wavelet method is derived for general nth order ODE. The Richardson extrapolation method is utilized for improving the accuracy of the solution. A number of model problems are examined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2015-08, Vol.126, p.227-232
Hauptverfasser: Majak, J., Shvartsman, B.S., Kirs, M., Pohlak, M., Herranen, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accuracy issues of Haar wavelet method are studied. The order of convergence as well as error bound of the Haar wavelet method is derived for general nth order ODE. The Richardson extrapolation method is utilized for improving the accuracy of the solution. A number of model problems are examined. The numerically estimated order of convergence has been found in agreement with convergence theorem results in the case of all model problems considered.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2015.02.050