Heavy Metal Immobilization in Contaminated Soils using Phosphogypsum and Rice Straw Compost
The application of soil amendments to immobilize heavy metals is a promising technology to meet the requirements for environmentally sound and cost‐effective remediation. The present study was carried out to evaluate the result of phosphogypsum (PG) used alone and in combination with compost (CP) at...
Gespeichert in:
Veröffentlicht in: | Land degradation & development 2015-11, Vol.26 (8), p.819-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of soil amendments to immobilize heavy metals is a promising technology to meet the requirements for environmentally sound and cost‐effective remediation. The present study was carried out to evaluate the result of phosphogypsum (PG) used alone and in combination with compost (CP) at a mix ratio of 1:1 wet weight ratio (PG + CP) at 10 and 20 g dry weight kg⁻¹ dry soil, on heavy metal immobilization in contaminated soil and on canola growth. The results revealed that the Pb, Cd and Zn uptake of canola plants was reduced by the application of PG alone and when it was mixed with CP as compared with untreated soil. At an application rate of 10 g dry weight kg⁻¹ dry soil of (PG + CP) the dry weight of canola plants increased by 66·8% was increased in comparison with its weight in the untreated soil. The addition of PG alone resulted in more pronounced immobilization of heavy metal as compared with PG mixed with CP. Plant growth was improved with CP addition, but heavy metals immobilization was the greatest in PG alone treatments. Results suggest that PG may be useful for the immobilization of heavy metals in contaminated soils. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1085-3278 1099-145X |
DOI: | 10.1002/ldr.2288 |