Interval prediction of molecular properties in parametrized quantum chemistry
The accurate evaluation of molecular properties lies at the core of predictive physical models. Most reliable quantum-chemical calculations are limited to smaller molecular systems while purely empirical approaches are limited in accuracy and reliability. A promising approach is to employ a quantum-...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-06, Vol.112 (25), p.253003-253003, Article 253003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate evaluation of molecular properties lies at the core of predictive physical models. Most reliable quantum-chemical calculations are limited to smaller molecular systems while purely empirical approaches are limited in accuracy and reliability. A promising approach is to employ a quantum-mechanical formalism with simplifications and to compensate for the latter with parametrization. We propose a strategy of directly predicting the uncertainty interval for a property of interest, based on training-data uncertainties, which sidesteps the need for an optimum set of parameters. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.112.253003 |