Iterative Spherical Downward Continuation Applied to Magnetic and Gravitational Data from Satellite

In the last few decades, satellites have acquired various potential data sets hundreds of kilometers above the Earth’s surface. Conventionally, these global magnetic and gravitational data sets are approximated by using spherical harmonics that allow straightforward work with both fields outside the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surveys in geophysics 2014-07, Vol.35 (4), p.941-958
Hauptverfasser: Sebera, Josef, Šprlák, Michal, Novák, Pavel, Bezděk, Aleš, Vaľko, Miloš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last few decades, satellites have acquired various potential data sets hundreds of kilometers above the Earth’s surface. Conventionally, these global magnetic and gravitational data sets are approximated by using spherical harmonics that allow straightforward work with both fields outside the Earth’s mass. In this article, we present an alternative approach for working with potential data in mass-free space given over a regular coordinate grid on a spherical surface. The algorithm is based on an iterative scheme and the Poisson integral equation for the sphere. With help from the Fourier transform, global potential (magnetic or gravitational) data can efficiently be continued from a mean orbital sphere down to a reference surface without using the spherical harmonics. This is illustrated both with simulated magnetic field data and with real data from the satellite gradiometry mission GOCE. In the case of simulated magnetic data and the downward continuation for 450 km, we have achieved a root mean square at the level of 0.05 nT, while it was
ISSN:0169-3298
1573-0956
DOI:10.1007/s10712-014-9285-z