Polynomial partitioning for a set of varieties

Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2015-11, Vol.159 (3), p.459-469
1. Verfasser: GUTH, LARRY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 3
container_start_page 459
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 159
creator GUTH, LARRY
description Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.
doi_str_mv 10.1017/S0305004115000468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770289126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004115000468</cupid><sourcerecordid>1770289126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1c7f7be80790c3facef60dd9cb5c98184c6be44b7e89227cc260b28415cc60383</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuCFy9b30uySfYoxX9QUFDPSzZNSsrupiZbod_eFHsQxcubw_xmeAwhlwgzBJQ3r8CgAuCI-QIX6ohMkIu6VCD4MZns7XLvn5KzlNaZYTXChMxeQrcbQu91V2x0HP3ow-CHVeFCLHSR7FgEV3zq6O3obTonJ053yV4cdEre7-_e5o_l4vnhaX67KA0XbCzRSCdbq0DWYJjTxjoBy2Vt2srUChU3orWct9KqmlJpDBXQUsWxMkYAU2xKrr97NzF8bG0am94nY7tODzZsU4NSAlU1UpHRq1_oOmzjkL_LFGWikgp4pvCbMjGkFK1rNtH3Ou4ahGa_YPNnwZxhh4zu2-iXK_uj-t_UF8dscGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1723657804</pqid></control><display><type>article</type><title>Polynomial partitioning for a set of varieties</title><source>Cambridge Journals Online</source><creator>GUTH, LARRY</creator><creatorcontrib>GUTH, LARRY</creatorcontrib><description>Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004115000468</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Geometry ; Mathematical analysis ; Partitioning ; Polynomials</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2015-11, Vol.159 (3), p.459-469</ispartof><rights>Copyright © Cambridge Philosophical Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1c7f7be80790c3facef60dd9cb5c98184c6be44b7e89227cc260b28415cc60383</citedby><cites>FETCH-LOGICAL-c463t-1c7f7be80790c3facef60dd9cb5c98184c6be44b7e89227cc260b28415cc60383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004115000468/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>GUTH, LARRY</creatorcontrib><title>Polynomial partitioning for a set of varieties</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.</description><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Partitioning</subject><subject>Polynomials</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwNuCFy9b30uySfYoxX9QUFDPSzZNSsrupiZbod_eFHsQxcubw_xmeAwhlwgzBJQ3r8CgAuCI-QIX6ohMkIu6VCD4MZns7XLvn5KzlNaZYTXChMxeQrcbQu91V2x0HP3ow-CHVeFCLHSR7FgEV3zq6O3obTonJ053yV4cdEre7-_e5o_l4vnhaX67KA0XbCzRSCdbq0DWYJjTxjoBy2Vt2srUChU3orWct9KqmlJpDBXQUsWxMkYAU2xKrr97NzF8bG0am94nY7tODzZsU4NSAlU1UpHRq1_oOmzjkL_LFGWikgp4pvCbMjGkFK1rNtH3Ou4ahGa_YPNnwZxhh4zu2-iXK_uj-t_UF8dscGI</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>GUTH, LARRY</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Polynomial partitioning for a set of varieties</title><author>GUTH, LARRY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1c7f7be80790c3facef60dd9cb5c98184c6be44b7e89227cc260b28415cc60383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Partitioning</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUTH, LARRY</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Journals (ProQuest Database)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUTH, LARRY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial partitioning for a set of varieties</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>159</volume><issue>3</issue><spage>459</spage><epage>469</epage><pages>459-469</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004115000468</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2015-11, Vol.159 (3), p.459-469
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_1770289126
source Cambridge Journals Online
subjects Geometry
Mathematical analysis
Partitioning
Polynomials
title Polynomial partitioning for a set of varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20partitioning%20for%20a%20set%20of%20varieties&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=GUTH,%20LARRY&rft.date=2015-11-01&rft.volume=159&rft.issue=3&rft.spage=459&rft.epage=469&rft.pages=459-469&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004115000468&rft_dat=%3Cproquest_cross%3E1770289126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1723657804&rft_id=info:pmid/&rft_cupid=10_1017_S0305004115000468&rfr_iscdi=true