Polynomial partitioning for a set of varieties

Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2015-11, Vol.159 (3), p.459-469
1. Verfasser: GUTH, LARRY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set Γ of low-degree k-dimensional varieties in $\mathbb{R}$ n , we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of $\mathbb{R}$ n \Z(P) intersects O(Dk−n |Γ|) varieties of Γ.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004115000468