Characterisation of quasi-stationary planetary waves in the Northern MLT during summer

Observations of planetary wave (PW) activity in the northern hemisphere, polar summer mesosphere and lower thermosphere (MLT) are presented. Meteor winds from a northern hemisphere chain of SuperDARN radars have been used to monitor the meridional wind along a latitude band (51–66°N) in the MLT. A s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and solar-terrestrial physics 2015-05, Vol.127, p.30-36
Hauptverfasser: Stray, Nora H., Espy, Patrick J., Limpasuvan, Varavut, Hibbins, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observations of planetary wave (PW) activity in the northern hemisphere, polar summer mesosphere and lower thermosphere (MLT) are presented. Meteor winds from a northern hemisphere chain of SuperDARN radars have been used to monitor the meridional wind along a latitude band (51–66°N) in the MLT. A stationary PW-like longitudinal structure with a strong zonal PW number 1 characteristic is persistently observed year-to-year during summer. Here we characterize the amplitude and the phase structure of this wave in the MLT. The Modern-Era Retrospective Analysis for Research and Application (MERRA) of the NASA Global Modelling and Assimilation Office has been used to evaluate possible sources of the observed longitudinal perturbation in the mesospheric meridional wind by investigating the amplitudes and phases of PWs in the underlying atmosphere. The investigation shows that neither gravity wave modulation by lower atmospheric PWs nor direct propagation of PWs from the lower atmosphere are a significant cause of the observed longitudinal perturbation. However, the data are not of sufficient scope to investigate longitudinal differences in gravity wave sources, or to separate the effects of instabilities and inter-hemispheric propagation as possible causes for the large PW present in the summer MLT. •Planetary wave observation in MLT using meteor winds from a chain of SuperDARN.•Strong longitudinal variations of the meridional wind can be observed during summer.•The longitudinal variations can be described as a quasi-stationary S1 PW structure.•Possible sources of the observed meridional wind variation are investigated.
ISSN:1364-6826
1879-1824
DOI:10.1016/j.jastp.2014.12.003