Robust Algorithms for Simultaneous Model Identification and Optimization in the Presence of Model-Plant Mismatch
In the presence of model-plant mismatch, the set of parameter estimates obtained using standard model identification procedures cannot accurately predict the gradients of the optimization problem. Hence, a “two-step” approach involving an identification followed by an optimization step, performed re...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2015-09, Vol.54 (38), p.9382-9393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the presence of model-plant mismatch, the set of parameter estimates obtained using standard model identification procedures cannot accurately predict the gradients of the optimization problem. Hence, a “two-step” approach involving an identification followed by an optimization step, performed repeatedly, often fails to converge to the true process optimum. In our recent work, we proposed a new identification procedure that progressively corrects the model for structural error such that the updated set of parameter estimates simultaneously satisfies both identification and optimization objectives with a guaranteed convergence to the true optimum. In this paper, we expanded our previous methodology in two directions: first, a new model correction based on a higher order approximation of model is proposed, and second, the effect of model uncertainties is considered explicitly by formulating a robust optimization problem at each iteration. The resulting improvements are then illustrated using a simulated study of fed-batch penicillin production process. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.5b01560 |