Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage

Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double‐layer capacitance, open structures for rapid ion transport, and redox‐active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2015-11, Vol.127 (45), p.13423-13427
Hauptverfasser: DeBlase, Catherine R., Hernández-Burgos, Kenneth, Rotter, Julian M., Fortman, David J., dos S. Abreu, Dieric, Timm, Ronaldo A., Diógenes, Izaura C. N., Kubota, Lauro T., Abruña, Héctor D., Dichtel, William R.
Format: Artikel
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double‐layer capacitance, open structures for rapid ion transport, and redox‐active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demonstrate a new attractive feature of PPNs—the ability of their reduced forms (radical anions and dianions) to interact with small radii cations through synergistic interactions arising from densely packed redox‐active groups, only when prepared as thin films. When naphthalene diimides (NDIs) are incorporated into PPN films, the carbonyl groups of adjacent, electrochemically generated, NDI radical anions and dianions bind strongly to K+, Li+, and Mg2+, shifting the formal potentials of NDI’s second reduction by 120 and 460 mV for K+ and Li+‐based electrolytes, respectively. In the case of Mg2+, NDI’s two redox waves coalesce into a single two‐electron process with shifts of 240 and 710 mV, for the first and second reductions, respectively, increasing the energy density by over 20 % without changing the polymer backbone. In contrast, the formal reduction potentials of NDI derivatives in solution are identical for each electrolyte, and this effect has not been reported for NDI previously. This study illustrates the profound influence of the solid‐state structure of a polymer on its electrochemical response, which does not simply reflect the solution‐phase redox behavior of its monomers. Aufgeladen: Dünne Filme aus porösem Naphthalindiimid(NDI)‐Polymer zeigen eine 20 % höhere Energiedichte in Gegenwart von Gegenkationen, die NDI in reduzierter Form im Festkörper stabilisieren. Ein solches Verhalten wird für das Monomer in Lösung nicht beobachtet, was auf die wichtige Rolle der Polymerstruktur in Systemen zur Speicherung elektrischer Energie deutet.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201505289