Confinement of spin-orbit induced Dirac states in quantum point contacts
The quantum transmission problem for a particle moving in a quantum point contact in the presence of a Rashba spin-orbit interaction and applied magnetic field is solved semiclassically. A strong Rashba interaction and parallel magnetic field form emergent Dirac states at the center of the constrict...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (8), Article 085302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum transmission problem for a particle moving in a quantum point contact in the presence of a Rashba spin-orbit interaction and applied magnetic field is solved semiclassically. A strong Rashba interaction and parallel magnetic field form emergent Dirac states at the center of the constriction, leading to the appearance of resonances which carry spin current and become bound at high magnetic fields. These states can be controlled in situ by modulation of external electric and magnetic fields, and can be used to turn the channel into a spin pump which operates at zero bias. It is shown that this effect is currently experimentally accessible in p-type quantum point contacts. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.92.085302 |