DORT method as applied to ultrawideband signals for detection of buried objects
The decomposition of the time reversal operator (DORT) method, originally developed in acoustics, allows detection of scatterers embedded in the probed domain and provides some very robust means for focusing an incident wave onto a given scatterer. Hence, this method is very helpful for clutter redu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2003-08, Vol.41 (8), p.1813-1820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The decomposition of the time reversal operator (DORT) method, originally developed in acoustics, allows detection of scatterers embedded in the probed domain and provides some very robust means for focusing an incident wave onto a given scatterer. Hence, this method is very helpful for clutter reduction. Here, it is applied to the detection of buried cylindrical objects with the help of electromagnetic ultrawideband signals. It is shown that when the set of antennas is located on a piece of line above an interface, the use of the DORT method remains simple, whatever the polarization, provided the contribution from the target can be separated from that of the interface. Using wideband signals also permits one to excite natural resonances of the buried scatterer, which can easily be extracted from the eigenvalues of the time reversal operator. Numerical examples based on a finite-difference time-domain algorithm are given. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2003.814139 |