Dirac electrons and domain walls: A realization in junctions of ferromagnets and topological insulators
We study a system of Dirac electrons with finite density of charge carriers coupled to an external electromagnetic field in two spatial dimensions, with a domain wall (DW) mass term. The interface between a thin-film ferromagnet and a three-dimensional topological insulator provides a condensed-matt...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (8), Article 085416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a system of Dirac electrons with finite density of charge carriers coupled to an external electromagnetic field in two spatial dimensions, with a domain wall (DW) mass term. The interface between a thin-film ferromagnet and a three-dimensional topological insulator provides a condensed-matter realization of this model, when an out-of-plane domain wall magnetization is coupled to the topological insulator surface states. We show how, for films with very weak intrinsic in-plane anisotropies, the torque generated by the edge electronic current flowing along the DW competes with an effective in-plane anisotropy energy, induced by quantum fluctuations of the chiral electrons bound to the wall, in a mission to drive the internal angle of the DW from a Bloch configuration towards a Neel configuration. Both the edge current and the induced anisotropy contribute to stabilize the internal angle, so that for weak intrinsic in-plane anisotropies DW motion is still possible without suffering from an extremely early Walker breakdown. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.92.085416 |