Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion

[Display omitted] The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-07, Vol.20, p.104-112
Hauptverfasser: Oh, Dongyeop X., Kim, Sangsik, Lee, Dohoon, Hwang, Dong Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2015.03.031