Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies

Although covalent interactions determine the primary structure of a molecule, the noncovalent interactions are responsible for the tertiary and quaternary structure of a molecule and create the fascinating world of the 3D architectures of biomacromolecules. For example, the double helical structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2012-04, Vol.45 (4), p.663-672
1. Verfasser: Hobza, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although covalent interactions determine the primary structure of a molecule, the noncovalent interactions are responsible for the tertiary and quaternary structure of a molecule and create the fascinating world of the 3D architectures of biomacromolecules. For example, the double helical structure of DNA is of fundamental importance for the function of DNA: it allows it to store and transfer genetic information. To fulfill this role, the structure is rigid to maintain the double helix with a proper positioning of the complementary base, and floppy to allow for its opening. Very strong covalent interactions cannot fulfill both of these criteria, but noncovalent interactions, which are about 2 orders of magnitude weaker, can. This Account highlights the recent advances in the field of the design of novel wave function theory (WFT) methods applicable to noncovalent complexes ranging in size from less than 100 atoms, for which highly accurate ab initio methods are available, up to extended ones (several thousands atoms), which are the domain of semiempirical QM (SQM) methods. Accurate interaction energies for noncovalent complexes are generated by the coupled-cluster technique, taking single- and double-electron excitations iteratively and triple-electron excitation perturbatively with a complete basis set description (CCSD(T)/CBS). The procedure provides interaction energies with high accuracy (error less than 1 kcal/mol). Because the method is computationally demanding, its application is limited to complexes smaller than 30 atoms. But researchers would also like to use computational methods to determine these interaction energies accurately for larger biological and nanoscale structures. Standard QM methods such as MP2, MP3, CCSD, or DFT fail to describe various types of noncovalent systems (H-bonded, stacked, dispersion-controlled, etc.) with comparable accuracy. Therefore, novel methods are needed that have been parametrized toward noncovalent interactions, and existing benchmark data sets represent an important tool for the development of new methods providing reliable characteristics of noncovalent clusters. Our laboratory developed the first suitable data set of CCSD(T)/CBS interaction energies and geometries of various noncovalent complexes, called S22. Since its publication in 2006, it has frequently been applied in parametrization and/or verification of various wave function and density functional techniques. During the intense use of this data set
ISSN:0001-4842
1520-4898
DOI:10.1021/ar200255p